3.365 \(\int \frac{(a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{7/2}} \, dx\)

Optimal. Leaf size=42 \[ \frac{\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{6 f (c-c \sin (e+f x))^{7/2}} \]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(6*f*(c - c*Sin[e + f*x])^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0920967, antiderivative size = 42, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.033, Rules used = {2742} \[ \frac{\cos (e+f x) (a \sin (e+f x)+a)^{5/2}}{6 f (c-c \sin (e+f x))^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^(5/2)/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2))/(6*f*(c - c*Sin[e + f*x])^(7/2))

Rule 2742

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(a*f*(2*m + 1)), x] /; FreeQ[{a, b, c, d, e, f
, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[m, -2^(-1)]

Rubi steps

\begin{align*} \int \frac{(a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{7/2}} \, dx &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{5/2}}{6 f (c-c \sin (e+f x))^{7/2}}\\ \end{align*}

Mathematica [B]  time = 0.98255, size = 110, normalized size = 2.62 \[ \frac{a^2 (3 \cos (2 (e+f x))-5) \sqrt{a (\sin (e+f x)+1)} \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )}{6 c^3 f (\sin (e+f x)-1)^3 \sqrt{c-c \sin (e+f x)} \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^(5/2)/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(a^2*(-5 + 3*Cos[2*(e + f*x)])*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*Sqrt[a*(1 + Sin[e + f*x])])/(6*c^3*f*(Cos
[(e + f*x)/2] + Sin[(e + f*x)/2])*(-1 + Sin[e + f*x])^3*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.142, size = 136, normalized size = 3.2 \begin{align*}{\frac{ \left ( \cos \left ( fx+e \right ) -2 \right ) \left ( \cos \left ( fx+e \right ) +2 \right ) \left ( -1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) \right ) \sin \left ( fx+e \right ) }{3\,f \left ( \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) - \left ( \cos \left ( fx+e \right ) \right ) ^{3}+2\,\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) +3\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}-4\,\sin \left ( fx+e \right ) +2\,\cos \left ( fx+e \right ) -4 \right ) } \left ( a \left ( 1+\sin \left ( fx+e \right ) \right ) \right ) ^{{\frac{5}{2}}} \left ( -c \left ( -1+\sin \left ( fx+e \right ) \right ) \right ) ^{-{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(7/2),x)

[Out]

1/3/f*(cos(f*x+e)-2)*(cos(f*x+e)+2)*(-1+cos(f*x+e)+sin(f*x+e))*(a*(1+sin(f*x+e)))^(5/2)*sin(f*x+e)/(cos(f*x+e)
^2*sin(f*x+e)-cos(f*x+e)^3+2*sin(f*x+e)*cos(f*x+e)+3*cos(f*x+e)^2-4*sin(f*x+e)+2*cos(f*x+e)-4)/(-c*(-1+sin(f*x
+e)))^(7/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{5}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(7/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(5/2)/(-c*sin(f*x + e) + c)^(7/2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.0975, size = 265, normalized size = 6.31 \begin{align*} \frac{{\left (3 \, a^{2} \cos \left (f x + e\right )^{2} - 4 \, a^{2}\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{3 \,{\left (3 \, c^{4} f \cos \left (f x + e\right )^{3} - 4 \, c^{4} f \cos \left (f x + e\right ) -{\left (c^{4} f \cos \left (f x + e\right )^{3} - 4 \, c^{4} f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(7/2),x, algorithm="fricas")

[Out]

1/3*(3*a^2*cos(f*x + e)^2 - 4*a^2)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)/(3*c^4*f*cos(f*x + e)^3
- 4*c^4*f*cos(f*x + e) - (c^4*f*cos(f*x + e)^3 - 4*c^4*f*cos(f*x + e))*sin(f*x + e))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(5/2)/(c-c*sin(f*x+e))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{5}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(7/2),x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^(5/2)/(-c*sin(f*x + e) + c)^(7/2), x)